

Bestimmung von Selenit SeO₃²-

Beschreibung

Die Bestimmung des Selen-Gehaltes erfolgt durch Umsetzung des Selenits mit Kaliumiodid und Titration mit Natriumthiosulfat-Lösung 0.1 mol/l.

$$SeO_3^{2-} + 4 I^- \rightarrow Se + 2 I_2$$

Diese Bestimmung ist nicht immer einfach, da das elementare Selen aus der Lösung ausfällt und die Elektrode belegen kann. Aus diesem Grund muss Polyvinylalkohol als Dispergiermittel zugesetzt werden. Die Berechnung erfolgt als % Selen.

Geräte

Titrator	TL 7000 oder höher	
Elektrode	Pt 62 oder Pt 61	
Kabel	L1A	
Rührer	Magnetrührer TM 235 oder ähnliche	
Laborgeräte	Becherglas 150 ml	
	Magnetrührstab 30 mm	

Reagenzien

1	Natriumthiosulfat 0.1 mol/l		
2	Kaliumiodid		
3	Salzsäure ca. 25%		
4	Polyvinylalkohol – Lösung 0.5%		
5	Destilliertes Wasser		
6	Elektrolytlösung L300		
	Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

Die Titerbestimmung der $Na_2S_2O_3$ - Lösung erfolgt wie in der Applikationsschrift "Titerbestimmung von $Na_2S_2O_3$ " beschrieben.

Polyvinylalkohol – Lösung 0.5%

0.5 g Polyvinylalkohol werden in 100 ml destilliertem Wasser unter erwärmen gelöst.

Reinigung der Elektrode

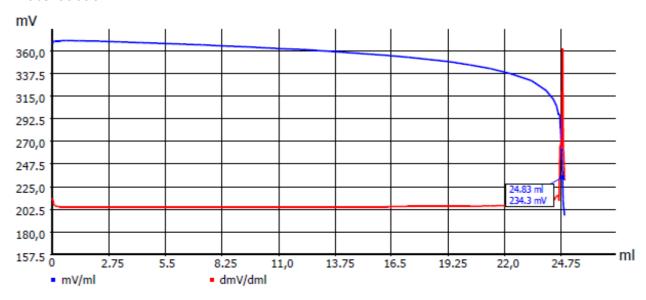
Die Elektrode wird mit destilliertem Wasser gereinigt. Für die Lagerung eignet sich die Elektrolytlösung L300.

Probenvorbereitung

Die Probe wird in ein 150 ml Becherglas eingewogen, mit etwa 70 ml destilliertem Wasser aufgefüllt und 5 ml HCl 25% zugegeben. Bei basischen Proben kann auch mehr HCl nötig sein. Nach Auflösen der Probe wird 1 ml der Polyvinylalkohollösung und 1-1,5g Kl zugegeben. Die Lösung färbt sich rötlich-braun und wird trüb. Anschließend wird mit Natriumthiosulfat 0,1 mol/l titriert. Der Verbrauch sollte bei etwa 10-40 ml liegen.

Die Probenmenge sollte an den Selengehalt angepasst werden.

Selengehalt [% Se]	Einwaage [g]
~ 50%	0,1 – 0,15
~ 5%	0,8-1,2g


Bei inhomogenen Proben, z.B. Mischungen von festem Natriumselenit mit Füllstoffen, kann es notwendig sein, eine größere Menge Probe aufzulösen und einen aliquoten Teil davon zu titrieren.

Falls die Elektrode schnell durch ausgefallenes Selen belegt wird und die Titrationskurve dadurch unruhiger wird, kann es auch vorteilhaft sein, die Probe stärker zu verdünnen.

xylem | Titration 142 AN 2

Titrationsparameter

Probentitration

Standardmethode			
Methodentyp	Automatische Titration		
Modus	Dynamisch		
Messwert	mV		
Messgeschwindigkeit / Drift	Benutzerdefiniert	Min. Wartezeit	5 s
		Max. Wartezeit	15 s
		Messzeit	3 s
		Drift	8 mV/min
Startwartezeit	0 s		
Dynamik	Mittel	Max. Schrittweite	1.0 ml
_		Steigung bei max. ml	10
		Min. Schrittweite	0.02 ml
		Steigung bei min. ml	120
Dämpfung	keine	Titrationsrichtung	steigend
Vortitration	aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	700
Max. Titrationsvolumen	50 ml		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

xylem | Titration 142 AN 3

Berechnung:

$$Result \left[\% \, Se\right] = \frac{(EQ1-B)*T*M*F1}{W*F2}$$

В	0	Blindwert	
EQ1		Verbrauch des Titrationsmittels am ersten EQ	
Т	WA	Exakte Konzentration des Titrationsmittels	
М	78.97	Molekulargewicht von Selen	
W	man	Einwaage [g]	
F1	0.1	Umrechnungsfaktor 1	
F2	4	Umrechnungsfaktor 2	

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

